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ABSTRACT

The !m0t10n of charged particles in a model magnetosphere is studied using
the three adiabatic invariants. The particle shell gecometry is determined, and
drift velocities. bounce periods and equatorial pitch angles are computed as a
function of local time. The following conclusions were reached:

1. Shell splitting in the outer magnetosphere becomes important bevond 5
earth radii: dipole-type descriptions of the radiation belt become invalid.

2. Equatorial pitch angles tend to align along field lines on the night side of
the magnetosphere, and perpendicularly to the field. on the day side,

3. There are regions in the magnetosphere. where only pseudo-trapped
particles can mirror. i.e. particles which will leave the magnetosphere before
completing a 180° drift.

4. Longitudinal drift velocities depart considerably from the dipole values
beyond 5 R,. and can be as much as 2-3 times grcater on the night side than on
the day side. Thus a given particle spends 2-3 times more time in the day side
than in the night side.

5. The action of a pitch angle scattering mechanism will lead to a radial
diffusion of particles. The loss mechanism will be greatly enhanced by scatter-
ing of mirror points into the pseudo-trapping regions.

6. After recovery from a prototype magnetic storm, particles which were
in the day side during the sudden commencement will have higher energies, their
shells having moved radially inwards. Particles caught in the night side will have
moved outwards. with their energies decreased.

7. The repeated action of magnctic storms will result in a net inward dif-

fusion of particles. with a net increase of their energy.

iii



ON THE ADIABATIC MOTION OF ENERGETIC PARTICLES

IN A MODEL MAGNETOSPHERE

I. INTRODUCTION

Recent experimental results on trapped particle flux behavior in the outer
magnetosphere indicate that physical processes governing particle diffusion and
acceleration, are strongly influenced by the trapping field itself and by the time-
changes of its configuration. The main evidence comes from the observed strong
correlations between particle flux and energy spectra variations beyond 2-3
earth radii, with geomagnetic perturbations such as the sudden commencement

of a geomagnetic storm or the ring current during the main phase [Frank, 1966;

Mcllwain, 1965; Mcllwain, 1966 ]. It seems therefore useful to attempt a detailed

theoretical description of the behavior of a flux of trapped particles using a reason-
ably accurate magnetospheric field model, and simulating prototype time varia-
tions of the field configuration. The first detailed studies of this type were done

by Hones [1963] for auroral particles. and by Fairfield [1964] for energetic

particles.

There are several sources of the field in the geomagnetic cavity: the mag-
netization of the earth's interior, the currents flowing on the surface of the mag-
netopause, the currents in the "neutral sheet" of the tail of the magnetosphere and,
eventually, diamagnetic ring currents originating in trapped particle density
gradients at 2-4 earth radii. At geocentric distances of less than, say, 4 earth
radii, the internal geomagnetic field dominates; beyond 4R_, the currents in
the magnetopause (and in the neutral sheet) perturb the dipole-type internal
field, and introduce a strong noon-midnight asymmetry. Any model must take

these sources into account.



Before adopting de facto a given field model, let us list our requirements.
First of all,we are mainly interested in particles trapped onfield lines reaching out
beyond, say, 5 earth radii, on the equatorial plane. This means that we can safely
ignore all higher multipoles of the internal field, and replace it by a centered
dipole. Second, we shall also ignore the effect of a ring current. Third, we shall
consider the dipole axis perpendicular to the sun-earth line, which of course is a
very substantial limitation. However, a "wobbling' dipole would make our calcu-
lations immensely more complicated, without, however, adding much to the gen-
eral results, at least within the scope of this paper. Finally, electric fields will
be ignored; this means that we are restricting ourselves to particles of high
enough energy to ensure that the gradient drift always prevails over the E X B

drift.

A model which satisfies these requirements and which has already predicted
or explained experimental results with good quantitative agreement, is that given

by [Mead, 1964; Williams and Mead, 1965; Mead, 1965]. This model considers

two sources, in addition to the internal dipole; currents in the magnetopause,

and currents in the tail of the magnetosphere. Four adjustable parameters de-
termine the field in Mead's model; (1) The distance R, from the center of the
earth to the magnetopause, in the solar direction; (2) and (3), the distances R . ,
R from the center of the earth to the close and far limit of the neutral sheet

in the anti-solar direction, respectively, and (4) the field intensity B, near the
neutral sheet. Most of the typical variations of these parameters. See Section IV

for choice of parameters actually used.

Fig. 1 shows field lines of this model in the noon-midnight meridians, cor-

responding to the parameters which we shall adopt as describing the quiet-time
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state of the magnetosphere. In this figure, all field lines start at equally spaced
latitudes on the earth's surface. In order to save time and space, we shall call

Mead's model of the magnetospheric field '"the meadosphere."

II. ADIABATIC INVARIANTS

The motion of charged particles in a trapping field geometry can be described
by means of three adiabatic constants of motion [Northrop, 1963 ]. Although the
the invariants yield incomplete information about the actual position of a particle
as a function of time, they do lead to the determination of the two dimensional
manifolds or "particle shells," on which the guiding centers of the particles are
confined. They further provide general information on the energy changes of the

particles, although, again, no "microscopic' time-history would be available.

The three adiabatic invariants are the following: (1) the magnetic moment
M of the particle, generated by its cyclotron motion around a field line; (2) the
second invariant J, associated with its bounce motion along a field line between
mirror points;(3) the flux invariant, associated with its azimuthal or longitudinal

drift motion. The definition of these quantities are:

p2
= L.
v 2m,B (1)
J=§p,ds (@)
® - § A - dx 3)




p, and p are components of the momentum perpendicular and parallel to the
magnetic field vector, respectively; B is the absolute magnetic field at the
instantaneous position of the guiding center and m the rest mass. In (2), the
integration is extended along the field line for a complete bounce oscillation;
ds is the element of arc of the field line. (3) represents the magnetic flux en-
closed by the particle shell; A is the magnetic vector potential, and the integral
is extended along any closed path passing around the particle shell and lying in
it. These quantities are adiabatic constants, i.e. conserved only under certain
conditions. Each of the invariants has an associated characteristic period of
time and a characteristic length. These are respectively; (1) cyclotron period
and gyroradius; (2) bounce period and arc length between conjugate mirror points;
(3) azimuthal drift period and arc length of the equatorial ring of the shell. In
most magnetic field configurations, these characteristic quantities differ by sev-
eral orders of magnitude from one another. Adiabaticity requires that the field
configuration should not change appreciably during a characteristic period. If
this condition is violated, the corresponding value of the invariant will no longer
be conserved. The other two may still remain unaffected.

In place of (1) and (2) we shall introduce two other expressions which are
much more convenient for numerical computations. According to (1), we intro-

duce the mirror point field intensity B_:

B = — (4)

P is the total momentum of the particle. Further, we introduce the geometric

integral



_ ]/_B(S> -3
I—f 1 —B:—dS-2p (5)

extended along the field line between one mirror point and its conjugate. B and

I uniquely determine a particle shell and will be used in what follows as the two
identifying parameters for such a shell. Notice at once that for a time-independent
magnetic field, in absence of electric fields, (4) and (5) are adiabatic invariants,
too. The advantage of (4) and (5) is that they only depend on the field geometry.
For time dependent fields, care has to be taken regarding relation (5). If p

changes appreciably during one bounce, we have:

J—_:—l:fp(s).l/l-?—(—i)— ds # 1 (5"
2p 2p B,

Only for slowly varing fields, (5) holds at all times.

Introducing the usual relativistic factor v = m /m , we can combine (4) and

(5) with (1) and (2) to obtain

2 - 2 _ _
(y DI _K1 = const. (6)

IzBm:Kzzconst. (7)

To these, we must add (3), which we write in the form:

®=0 (B, I) =K, =const, (8)

These are the adiabatic constants which will be used henceforth. They uniquely
determine ¥, I and B_ for any static field configuration. For time dependent
fields, K, and K, in general are not constant during the “nterval of change (see

(5')). However, if this interval is transient, i.e. if it is preceded and followed by

time independent states of the field, the constancy of K, and K, does hold when
(6) and (7) are evaluated for the initial and the final states.
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For a field constant in time, (8) is no longer needed, and , I and B are
conserved individually. A special case is that of particles mirroring on or close
to the equator (I = 0, B =B, ). In that case we replace (6) by the following,

derived from (4):

yi-1"¢ (62)

This holds all the time, even in non-static fields. In this special case, (8) is a

function of B_ only.

We have to add Liouville's Theorem, to relations (6), (7) and (8), in order to
complete our description of trapped particle dynamics. We introduce the direc-

tional, differential flux of particles populating a given I, B shell:

(9)

i=i(y I, B) Particles/steradian x energy X sec

Assume particles distributed on shell in such a way that there is a steady state.
For each point of the shell, there is a unique cone along whose elements the given
group of particlesis streaming. This directionis the particle's pitchangle, which
at the equatorial points of the shell is given by

. B,
a, = arc sin 3 (10)

B, = B_(I, B, ;azimuth) is the minimum or equatorial B value of a particular
field line of the shell. We must point out at once that even for time-independent
fields, a_ is not an adiabatic invariant like the mirror point field B ; in general
it will depend on azimuth (longitude or local time) through B_.

The particle density in phase space, f,associated with the flux (9) is given by

f = j/p?2. Liouville's Theorem states that this density in phase space remains



constant along the dynamical path of a particle, This means that, as long as all
particles always remainona common shell*, even if the shell itself changes with

time, the following conservation theorem holds:

i LB ) o
o ReTeonst (11)

(6), (7), (8), and (11) are the basic expressions to be used for the study of the
evolution in space and time of trapped particles in the outer magnetosphere.
The first three lead to the determination of the actual shell of a given group of
particles, and their actual energy; equation (11) gives the actual value of the
directional differential flux of this group of particles.

As was shown by [ Anderson, Crane, Francis, Newkirk and Walt, 1964 ] the

average equatorial azimuthal drift velocity u of the particles populating and I, B
shell can be obtained as a direct consequence of Liouville's Theorem. The

value is, with our notation:

(12)

VI is the limit of 61/%y where ¢y is the equatorial distance between two neigh-
boring shells, each one characterized by I and I+31, respectively, and by the
same B -value. S is the half-bounce path, i.e. the rectifiedpath of the particle

between one mirror point and its conjugate:

ds
S, -| —VF/—
gr ]

*This condition will be fulfilled if all invariants (6) — (8) are conserved throughout the evolution
of the system.




S, is related to the bounce period by 7, = 2S, /v where v = particle velocity.
We can obtain an expression for S, by taking the derivative of (5) with respect to

the mirror point field intensity B along a given field line. It can be shown by

simple algebra that

91
Sb:I—ZBmﬁ (13)

The derivative has to be taken along the given field line. This expression has
general validity for any trapping field geometry, and is very useful for computa-
tional purposes, for it only requires the calculation of I on two neighboring

points of a field line.

11I. QUALITATIVE DISCUSSION

Before getting into the discussion of numerical computations for particle
shell geometry and time variations of the meadosphere, it is useful to present
a qualitative analysis of the consequences of the previous section. First of all,
let us envisage a trapping magnetic field constant in time. In this case, (4) and
(5) are conserved. We can assign to each point in space a pair of values I, B_
such that a particle mirroring there has the value I for the integral (5), B_
being simply the field intensity at that point. In this way, I and B_ become uni-
form functions of space. As the particle drifts to other field lines, it must keep

these values constant, i.e., it will cover a shell of field lines which pass through

N 7 CONSTANT B SURFACE
~.\

N

Figure 2-Geometric definition
of a particle shell

CONSTANT 1 SURFACE

SHELL OF
FIELD LINES

CONSTANT T SURFACE
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the intersections of two given constant-I and constant—Bm surfaces (Fig. 2). No-
tice carefully that the surface I =const. is not the particle shell.

Let us consider the geomagnetic field. Take a particle which starts at a
given longitude ¢, circling around a given field line and mirroring at a value B..
The integral (5) computed along the field line between the two mirror points, has
a value I. This means that when drifting through any other longitude, say 180°
away, this particlc will be bouncing along a field line which passes through the
intersection of the corresponding I =const. and B =const. surfaces. Now take
a particle which starts on the same initial field line, but which mirrors at a lower

value B! <B_(Fig. 3). Its integral (5) will also be smaller, I' < I. After a 180°

I'a CONST

I'= CONST

I B = CONST
B!,= CONST B .
INITIAL FIELD LINE SPLIT SHELLS
AT ¢ AT ¢ +180°

Figure 3-Shell splitting in
asymmetric fields.
longitudinal drift, this second particle will be traveling along a field line which
passes through the intersection of the surface I' = const.and B! = const.
< Only in case of perfect azimuthal symmetry (as in the pure dipole), will these
surfaces intersect exactly on the same line as that of the first particle. In the
general case, particles starting on the same field line at a given longitude will

populate different shells, according to their initial mirror point fields, or, what
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is equivalent, according to their initial equatorial pitch angles (10) (of course, all
these different shells would be tangent to each other at the initial field line).

For the case of the real geomagnetic field in absence of external perturba-
tions, i.e. within about 3-4 earth radii, it can be shown that the distance between
split shells is only very small, a fraction of 1% of the distance of the equatorial
point of a field line to the center of the earth. In other words, with a very good
approximation, one can say that all particles initially on the same field line, will
mirror on a common field line at any other longitude. This has an important
consequence: it enables a two~-dimensional description of the three-dimensional
radiation belts, at least up to distances of about 4R,. Indeed, if particles do popu-
late the same shell irrespective of their initial mirror points, the omnidirectional
flux of these particles will be the same on all points of the shell having the same
B value, irrespective of the longitude (i.e. local time)(provided of course, no ap-
preciable injections or losses occur during the drift). In order to describe
omnidirectional particle fluxes in the inner magnetosphere, we therefore need
only two "space'" parameters: the value of the magnetic field intensity at the point
of measurement and a parameter which characterizes the (unique) shell which
goes through that point. This latter is Mcllwain's L-parameter [Mcllwain, 1961].
L is a particular relation between I and B which remains constant (within g 1%)
on a given field line, and, therfore, on the whole shell generated by particles start-
ing on that field line. Numerically, L gives the average distance of the equatorial
points of a shell to the magnetic center.

But what happens in the outer magnetosphere, where the azimuthal symmetry
is brutally removed? Particles starting on the same field line, say in the noon

meridional plane, will now populate different shells, depending on their initial
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mirror points or equatorial pitch angles. For instance, they will cross the mid-
night meridian on different lines.

Let us start with a particle mirroring at or near the equator, on a line in
the noon meridian, close to the boundary. For this particle, I = 0; according to
(6a) it will drift around the earth on the equator following a constant-B path.
This constant-B path comes considerably closer to the earth at the night side,
because the field is weaker there (less compression), and we must go to lower
altitudes in order to find a given B value. On the other hand, a particle which
starts on the same field line on the noon meridian, but which is mirroring at
high latitudes, will have a high I value. Under these circumstances, Mead has shown
[ Mead, 1965] that the value of I is not much different from the arc length of the field
line between mirror points. On the midnight meridian, the particle will there-
fore be found on a line which has nearly the same length than the initial one, i.e.
stretching out to roughly the same equatorial distance. In summary, all particles
initially on the same noon-line, will cross the midnight plane on line portions

sketched in Fig. 4. Furthermore, it is easy to realize that particles mirroring

NOON MIDNIGHT
COMMON LINE SPLIT LINES

Figure 4—Qualitative picture of shell
splitting in amodel magnetosphere for
particles starting on a common field
line in the noon meridian.
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inside that area (BB'), will cross the noon meridian outside (AA’) of the initial
line. If this noon-line is very close to the boundary, no stably trapped particle
could be found mirroring inside the hatched area in the midnight meridional
plane. Any particle doing this would not be able to complete a drift around the
earth: it would abandon the magnetosphere before reaching the noon meridian.

We shall call this a "pseudo-trapped" particle !! (only transiently trapped). No-

tice finally that a sharp trapping boundary in the noon side would not result in a
sharp boundary in the back side.

On the other hand, for a given field line in the midnight meridian, all par-
ticles mirroring anywhere on this line, will cross the noon meridian in an area
like the one shown in Fig. 5. All particles mirroring outside that area (BB')

will cross the midnight-meridian outside (AA’) of the given line. If now there

Figure 5-Qualitative picture of
shell splitting for particles start-
ing on a common line in the mid-
night meridian.

NOON MIDNIGHT
SPLIT LINES COMMON LINE

is an "obstacle'" behind that line (like for instance the neutral sheet), no stably
trapped particle could be found outside the hatched area in the noon meridian.
Any particle injected there, would be lost into the ""obstacle' before reaching
the midnight meridian: in this high latitude noon region, only pseudo-trapped

particles could exist.
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We can also make some qualitative predictions regarding equatorial pitch
angles and longitudinal drift velocities of particles trapped in the meadosphere.
Take again a group of particles starting on a common noon-side line. It is
easy to see from Fig. 4, that the equatorial B-value of a given shell must
decrease towards the midnight meridian except for particles mirroring close
to the equator. This means that, according to (10), the equatorial pitch angle
must also decrease: particles align along field lines, in the midnight meridian.
On the other hand, inspection of Fig. 5 reveals that the opposite is true for
particles starting on a common field line in the midnight meridian: they

align perpendicularly to the field line on the day side of the meadosphere.

Regarding the drift velocity (12), we can qualitatively say that the field near
the day-side boundary is much more homogeneous than on the night side, or than
in the case of a pure dipole (Fig. 1). Therefore, VI will be relatively smaller,
and S, greater. Both facts indicate that the particles will drift slowest on the
noon meridian, spending therefore a greater fractional time in the day side of
the meadosphere. This may have very important consequences for outer belt
dynamics.

Turning now to a qualitative discussion of the effects of a time-dependent
magnetic field, we first have to point out that slow changes, which conserve
all three invariants (6), (7) and (8), are reversible. This means that whenever
the field is back to its initial configuration, all particles will be back on their
initial shells with no net change in energy or directional flux. During the
change, itself, a given shell will be deformed, its particles being accelerated
or decelerated and their directional flux changing accordingly. In order to have

a net change in shell, energy and flux after a complete cycle, it is necessary
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to have a non-adiabatic change in the field, which violates, say, the third invari-
ant. In this case, the time history of a particle depends on where in longitudinal
position on the shell the particles was surprised by the non-adiabatic field
change. It is easy to realize that due to this, the end-effect will always be a
diffusion, even if the cause itself (the non-adiabatic change in field configura-
tion) is not at all a stochastic process. Non-adiabatic compressions and dis-
tentions of the magnetosphere very likely are the main cause for radial diffusion

and acceleration of trapped protons [Nakada, Dungey and Hess, 1965 ].

There is, however, another possible radial diffusion process, associated
with shell splitting in the meadosphere. Suppose the action of an elastic pitch
angle scattering process, such as interactions with electromagnetic or hydro-
magnetic waves. This is a very short-time process which violates all three
invariants. However, the fact that the particle remains on the same field line
during the event (within one cyclotron radius) predetermines the new shell on
which the particle will drift after the interaction. Inspection of Figs. 4 and 5
reveals that for instance, a scattering process which, occuring on the noon
side, increases the pitch angle (lowers B_), will bring the particle to a shell
which on the average gets closer to the earth. The same scattering process,
occuring on the night side, would situate the particle on a shell extending
further out. Any type of pitch angle diffusion process will therefore be accom-
panied by a radial diffusion, which will be inwards or outwards according to
where in longitude the particles are more likely caught by the individual proc-
esses. If the original pitch angle scattering process is elastic, there would be
no change in energy in this type of radial diffusion. Such a diffusion mechanism
was experimentally observed in the Laboratory, and studied theoretically, by

[ Gibson, Jordan and Lauer, 1963].




1V. NUMERICAL RESULTS

A computer code was set up to determine particle shells in the meadosphere,

in order to study shell splitting and longitude dependence of drift velocities and

equatorial pitch angles for the static case, and in order to analyze the evolution

of a system of particle shells in a time-dependent case. The computer program

consists of four main parts, which perform more or less independent operations.

I.

I1.

I11.

Iv.

Field line geometry. This part furnishes complete geometric informa-

tion about a given field line, computes I and B_valuesfora set of particles
mirroring on this field line with prefixed equatorial pitch angles [re—
lations (10), (4) and (5)] and determines their drift velocities and

bounce periods [relations (12) and (13)] .

Shell geometry. Given the particles defined in part (1), this section of

the program finds the points of prefixed I, B_ values at other longi-
tudes, and traces the corresponding field lines, computing for each
case, drift velocity and bounce period. In this way, the complete shell
for each particle is generated.

Third invariant. This part computes the magnetic flux (3) enclosed

—_—

by the shell generated by a given particle. It is a combination of (1)
and (2), and a subroutine which computes the integral (3) along the
equatorial ring of the shell.

Non-adiabatic compression. Given a particle on a field line, this

part changes the field configuration simulating a sudden commence-
ment, finds the new field line (going through the same intersection
with the earth's surface), and locates the particle's mirror points

supposing conservation of the first two invariants.
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V. Shell deformation during adiabatic time variations. This part finds the

new I and B_ values, as well as the energy, of a particle after a slow
adiabatic change in the trapping magnetic field. Conservation theorems
(6), (7) and (8) are used in this computation,

Part (1) is mainly based on Mcllwain's INVAR code, conveniently imple-
mented for our purposes. Part (2) contains a key subroutine called SEARCH,
which at a given longitude finds the point of prescribed I and B, values (within
prefixed tolerances), by an iteration method. This subroutine is quite fast (a

fraction of a second on an IBM 7094, for a relative tolerance of 10°% in I and B).

Part (5) contains subroutine LOOK, which starts with an approximate value of I,
finds B through (7) for prescribed values of K, and K, (determined by the initial
state) , and computes the flux (8). The value of I is then corrected and the proce-
dure iterated until the prefixed value K, for ¢ is approached within the wanted
tolerance; v is then computed through (6). Remember that each step, i.e. each
evaluation of flux requires the complete determination of a particle shell, Even
so, this program is quite fast (10-20 seconds, to find a prefixed K, K,, K, shell)
with a relative tolerance for ® of 1073).

This program was applied using Mead's model of the magnetosphere. The
numerical values of the four intervening parameters (Section I) for the quiet

meadosphere were taken from (Ness and Williams, 1966]:Rs = 10R_,R_, =8R_,

in e

R .. =200R_andB, =15 gammas. Typical closed field lines are shown in
Fig. 1. The kink of the field lines reaching out beyond 8 R _ in the night side is
caused by the assumption in Mead's model of a two dimensional neutral sheet

(recent measurements, however, suggest a finite thickness of several earth
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Figure 6-Relationship between geomagnetic latitude of the intersection of a field
line with the earth’s surface, and the radial distance to its equatorial point, for
the noon, midnight and dawn/dusk meridians.

radii { Bame, Esbridge, Felthauser, Olson and Strong, 1966]. Figure 6 shows the

relationship between geomagnetic latitude of the intersection of a field line with
the earth's surface, and the radial distance to its equatorial point, for the noon,
midnight and dawn/dusk meridians.

Parts I and II of the code were applied to this quiet time field configura-
tion, to obtain magnetic shells for particles initially mirroring on a common
field line, and having equatorial pitch angles with cosines 0.2, 0.4, 0.6, 0.8 and
nearly 1 (mirroring close to the earth's surface). Fig. 7 shows how particles,
starting on a common line in the noon meridian, do indeed drift on different
shells, which intersect the midnight meridian along the field lines shown in the
figure. The dots represent particles' mirror points. Curves giving the position
of mirror points for constant equatorial pitch angles are traced for comparison

18
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(in a dipole field, they are constant latitude lines). Notice the change (decrease)
in equatorial pitch angle for the same particle, when it drifts from noon to mid-
night. Fig. 7 clearly confirms our qualitative predictions given in Section II:
shell splitting becomes considerable beyond 5 earth radii, and completely in-
validates the use of "L-values'" or any other dipole-type description of the
outer radiation belt. Fig. 8 depicts the same features for particles starting on a
common field line in the midnight meridian. In this case, again, the pitch angle
changes considerably when the particle drifts to the opposite meridian (increas-
ing at noon).

Notice from Figs. 7 and 8 that as equatorial pitch angles increase, shell
splitting is directed radially inwards for particles starting on the same field
line at noon, and radially outwards for particles starting on a common field line
at midnight. Furthermore, shell splitting is maximum for particles mirroring
close to the equator: for a given change in pitch angle (in degrees), the radial
displacement of the shell will be greater for equatorial particles.

When the initial field line has its equatorial point beyond about 8 R, a frac-
tion of the particles mirroring on it can only be pseudo-trapped, being lost before
completing a 180° drift. In particular, the computations reveal that particles
mirroring at low latitudes in the back side, abandon the meadosphere through the
boundary 30-40 degrees before reaching the noon meridian. On the other hand,
particles mirroring at high latitudes on the day side, run into the tail (open field
lines) 10-20 degrees before reaching the midnight meridian. Fig. 9 shows
computed limits between stable trapping and pseudo-trapping regions in the
meadosphere, on the noon-midnight plane. At other local times, both regions

approach more closely the meadospheric boundary; going from noon to midnight,
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Figure 9—Location of the “pseudo-trapping” regions in the magnetosphere. Particles
mirroring inside those regions are unable to complete a 1807 drift around the earth.
Those injected into the left side will be lost into the tail; those injected into the right
portion will abandon the magnetosphere through the boundary, on the day side.
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one disappears at the expense of the growth of the other. These results indicate
the existence of a quite considerable loss cone in the day side of the meado-

sphere.

Figs. 10a and 10b summarize the information about the shell splitting effect.
In both figures, the relation between noon and midnight radial distances to the
equatorial points of a particle shell is given. In Fig. 10a, particles start on a

common field line at noon, reaching out to R earth radii; in Fig. 10b, par-

noon
ticles start on a line at midnight, reaching out to R ;. . Curves are labeled
with the cosines of the initial pitch angles. Figs. 11a and 11b show how these
pitch angles change when the particles drift to the opposite meridian. Notice
again the marked tendency of particles to align along field lines on the night side,
and to '"'squeeze' transverse to the field on the day side.

The numerical calculations also confirm our predictions for local time
dependence of the equatorial drift velocity (Section II). The geometrical factors
appearing in (12) were computed, and represented in Figs. 12a and 12b as a
function of the equatorial distance of the corresponding field line, for different
pitch angles, and for noon and midnight, respectively. For a better understand-
ing, angular drift factors are shown. For radial distances < 3R _, we observe a
dipole-like dependence. Beyond 3 R , there is a considerable departure. Drift
velocities on the night side are indeed appreciably higher than on the day side.
The peculiar inversion of the pitch angle dependence, occuring on the day side
(Fig. 12a), is due to a shift in relative importance of curvature drift versus
gradient drift (particles mirroring at high latitude experience more of a dipole-
type field, and drift faster).

In Figs. 13a and 13b we have represented the percentage change of the linear

drift velocity of a given particle, when it drifts to the opposite meridian. A
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Figure 11a—~Particles starting in the noon meridian at a field line reaching out to R, oon and

initially having equatorial pitch angles of cosines 0.2, 0.4, 0.6, 0.8 and 1.0 respectively, will
appear on the midnight meridian with cosines of pitch angles given by the curves. Notice the
effect of alignment along the field lines (occuring at midnight), for radial distances > 6.
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Figure 11b—Farticles starting in the midnight meridian at a field line reaching outto R__
and initially having equatorial pitch angles of cosines 0.2, 0.4, 0.6, 0.8 and 1.0 respectively,
will appear on the midnight meridian with cosines of pitch angles given by the curves. Notice
the effect of alignment along the field lines (occurring at midnight), for radial distances < 5.
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close inspection of the local time dependence of the drift velocity (not shown

here) leads to the important conclusion that a given particle trapped in the outer
meadosphere (X 6R,) spends up to 2/3 -3/4 of its total lifetime in the day side.

In other words, there is always a higher probability to find a particle in the day
side than in the night side. It can be shown that, as a consequence, particle volume
densities can be about two times greater on the noon meridian, than at midnight, for
a given class of particles. This represents an additional important asymmetry for
trapped particle fluxes in the outer meadosphere.

As discussed in Section II, any pitch angle scattering mechanism will lead
to radial diffusion, due to shell splitting. According to the preceding results,
this radial diffusion will be mosteffective for equatorial particles. This mechan-
ism would tend to mix and blurr energy spectra of particles at different radial
distances. Furthermore, the existence of large pseudo-trapping regions, es-
pecially on the day side, implies an efficient particle sink for any pitch angle
scattering mechanism (enhanced loss cone). On the other hand, the reverse could
also be true: particles which happened to enter the pseudo-trapping regions from
outside, could be scattered into stably trapped orbits by any pitch angle scatter-
ing mechanism.

We now turn to the numerical results for a time-dependent magnetic field
configuration. The purpose is to study the trapped particle behaviour during a
simulated magnetic storm. Following steps were adopted as a "model" storm:

1. sudden, non-adiabatic compression, simulated by a decrease AR _of the

parameter R _ (inward displacement of the magnetopause).

2. optional sudden increase OB of the tail field.

3. gradual, adiabatic recovery to the initial field configuration.
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For (1) and (2) it is assumed that particles, while violating the third invariant (8),
stick to their original field line driven by the dominating ExB drift, still conserv-
ing the first two invariants (this "original” field line is supposed to be rigidly
rooted in the ionosphere, during the sudden compression). Part (4) of the
computer code is applied for this calculation. The gradual recovery in (3) is as-
sumed to be flux-conserving; part (5) of the computer code was used here.

Some of the results are summarized in Fig. 14, in which the percentage change
of kinetic energy of a particle is represented as a function of equatorial distance
of the initial field line, for different pitch angles, and for particles caught by the
compression at noon (upper curves), and at midnight (lower curves). This energy
variation is independent of the initial energy, and increases with the amount of
compression AR (taken = 2 R_ for the curves in Fig. 14). An inward motion of
the boundary of only 1 R_ would yield energy changes roughly 0.45 times those
shown in the figure. The curves given in Fig, 14 were derived for a sudden com-
mencement without a sudden increase of the tail field. If one adds a typical
increase AB, of 15 gammas, acceleration, deceleration and radial displacements
become greater by a factor of about 2, the effect being considerably enhanced for
particles which were in the night side during the sudden commencement.

One clearly sees in Fig. 14 that the final effect of a storm depends on where
in local time the particle was caught during the non-adiabatic phase: particles
which happened to be in the day side of the meadosphere will have a higher en-
ergy when the field recovers to the initial state; particles surprised in the night
side will be decelerated. Furthermore, the first group of particles will have
moved radially inwards, whereas the second group will be found on shells "in-

flated" outwards (Fig. 15). It should be pointed out that during the first phase of
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compression, both groups of particles attain higher energies; it is during the
adiabatic recovery, that this peculiar asymmetry arises. The fact that a given
particle always spends more time in the day side, leads to the conclusion that a
magnetic storm should always have a net effect of inward diffusion and acceler-
ation of trapped particles, after the field has recovered to the same initial con-
figuration. We finally must mention that during a magnetic storm a considerable
fraction of particles can be driven into pseudo-trapping regions of the meado-
sphere, and therefore be lost through the boundary, orinto the tail. Thiseffectis
particularly important for storms with increases of the tail field, which mainly
leads to losses through the boundary on the day side. Likewise, particles which
for some reason happened to be injected into pseudo-trapping regions during re-
covery, can become stably trapped, under favorable circumstances of injection.
The repeated action of magnetic storms will thei‘efore cause acceleration
and radial diffusion towards lower altitudes, of particles trapped in the outer
meadosphere. This mechanism leads to energy spectra which depend on radial
distance, hardening towards lower R values. This is indeed observed for pro-

tons [Davis and Williamson, 1963; Vernov, Vakulov, Kuznetsov, Logatchev,

Nikolaev, Sosnovets and Stolpovsky, 1966 ], and was explained theoretically by

[ Nakada, Dungey and Hess, 1965]. Electrons, however, should in addition be

subject to pitch angle scattering by electromagnetic waves; as discussed above,
the radial diffusion which accompanies pitch angle scattering when shell splitting

is considerable, should greatly blurr the radial dependence of energy spectra
for electrons.

IV. CONCLUSIONS
1. Shell splitting in the outer magnetosphere becomes important beyond 5

earth radii; dipole-type descriptions of the radiation belt become invalid.
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2. Equatorial pitch angles tend to align along field lines on the night side
of the magnetosphere, and perpendicularly to the field, on the day side.

3. There are regions in the magnetosphere, where only pseudo-trapped
particles can mirror, i.e. particles which will leave the magnetosphere before
completing a 180° drift,

4. Longitudinal drift velocities depart considerably from the dipole values
beyond 5 R _, and can be as much as 2-3 times greater on the night side than on

the day side. Thus a given particle spends 2-3 times more time in the day side

than in the night side.

5. The action of a pitch angle scattering mechanism will lead to a radial
diffusion of particles. The loss mechanism will be greatly enhanced by scat-
tering of mirror points into the pseudo-trapping regions.

6. After recovery from a prototype magnetic storm, particles which were
in the day side during the sudden commencement will have higher energies, their
shells having moved radially inwards. Particles caught in the night side will
have moved outwards, with their energies decreased.

7. The repeated action of magnetic storms will result in a net inward dif-

fusion of particles, with a net increase of their energy.
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APPENDIX I

"Listing of the program briefly described in the text. For more
details, see the comment cards and the list of output which follows
the listing. The deck is available on request.
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LIST OF OUTPUT

Initial field line:

VN 1:

OLAT:

OLONG:

B:

SPITCH:

BDIM:

FIDIM:

Radial distance in earth radii to field line points

latitude of field line points

longitude of field line points

field intensity in gauss, at field line points

cosines of equatorial pitch angles for a group of particles on the field
line

mirror point field intensities for these particles

corresponding values of second invariant (in earth radii)

SALT, SLAT, SLONG: coordinates of mirror points

SPATH:

SDRIFT:

EALT:
EQB:
ENERGY:

FLX:

half-bounce path (expression 13 in the text) corresponding to these
particles (in earth radii)

geometric factors giving drift velocities of these particles (for con-
version into cm/sec, see comment card)

radial distance to the equatorial point of the field line

equatorial B-value

kinetic energy of the particles, in units of rest energy

magnetic flux subtended by the shell generated by the particles (in

gauss (earth radii)?)

New field line (at a different longitude (splitting), or at the same longitude after

the simulation of a storm).

VN1, OLAT, OLONG, B: same as above

RPITCH, RALT, RLAT, RLONG, RPATH, RDRIFT; same as SPITCH, SALT, etc.

EQALT: radial distance to the equatorial points

EQBB: equatorial B-values
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Ot AO o000 n

o000 0on

s XeXaNal

- OO0 000

SPLIT
COM
lvSa
coM
DIM

MON Bl20U3),VNIL20L),VN2{220) 4 VN3(Z03) ,ARCL2G0) s VNEARI3),VBO(3),
VE(3),B0,BNEAR, JUP, MMM

MON FRONT,SHEET1,SHEETZ2,FSHEET

ENSION vI3), BDIM(9), FIDIM(9), EQALT(S), EQLONG(9)

DIMENSION SPITCH(9), RPITCH(9)

DIMENSION SALT(9), SLAT(9), SLONG{S), RALT(9), RLAT{9), RLCNGI(9)
DIMENSION SDRIFT(9), RDRIFT(9), SPATH{S), RPATH{S), EQBB(9), RLOST
17(9)

DIMENSTON ENERGY(9), FLXL9), OV2(9), QV3(9)

DIMENSION BEG(293), BEND(27U), €CO(200), BLOG(200)

ERR=0 0001

ERRB=3. 014

ERRI=0.008

ERRF=).901

FRONT = DISTANCE TO MAGNETGPAUSE AT STAGNATION POINT IN EARTH RADI
SHEZT1 = MINIMUM DISTANCE TO NEUTRAL SHEET IN EARTH PADII

SHEETZ = MAXIMUM RADIAL EXTENSION OF NEUTRAL SHEET IN MIDNIGHT
MERIDIAN IN EARTH RADII

FSHEET = FIELD STRENGTH PARALLEL TO NEUTRAL SHEET IN GAMMA

REAL (5,39) FRONT,SHEET1,SHEET2,FSHEET

KMAX = NUMBER CF MIRRDR POINTS AND PITCH ANGLES WANTED (.LE.9)

DELTA
START

STEP SIZE IN LONGITUDE (DEGREES) .
LONGITUCE INTERVAL T8 BE SKIPPED BEFORE STARTING STEPS

"o

TERM IS LONGITUCE WHERE SHELL TRACING SHOULD BE TERMINATED

REAC (5,4D) KMAX,DELTA,START,TERM

ISTGRM = 1 MEANS THAT AFTER FIRST SPLIT ANALYSIS, A GEOMAGRETIC
STURM SHCULD BE TURNED ON. WIND IS THE INWARD DISPLACEMENT

OF THE FRONT SICE OF THE MAGNETOSPHERE. STORM IS THE INWARD
DISPLACEMENT OF THZ EDGE OF THE NEUTRAL SHEET

HAIL IS THE INCREASE OF THE TAIL FIELD

IF NG STURM EFFECT IS WANTED, SET ISTORM=9

READ (5,40) ISTORM,WIND,STORM,HAIL

IF NU TRACING AT THE QPPQOSITE MERIDIAN IS WANTED, SET NOSPLT=1
OTHERWISE SET NOSPLT=(

READ (5,4J) NOSPLY

GAMMA IS TOTAL ENERGY IN UNITS OF REST MASSES

REAC (54331 GAMMA

FLONG=:80, IS NCCN MERIDIAN

ALY

MUST BE GIVEN IN EARTH RADII FROM CENTER QOF FARTH

REAC (5,39) ALT,FLAT,FLONG

IF

{ALT.LT.0.5) STCP

KONTRL={,
COSPIT=1,
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KMIN=1

GSG=GAMMA*GAMMA
GSEML=0LSQ~-1.
ORLONG=FLONG+STARTY

IF (ISTORM.,EQ.1) ORLONG=FLONG+]i80.
AALT=ALT

EKMAX=KMAX

DCGS=1./EKMAX

DU Z K=1,KMAX
ENERGY(K)=GAMMA=-1,
RLGSTT(K)=S,

SURIFT(K)="

vVili=ALY
VI(Z)=(9.~FLAT)/57.2957795
V(3)=FLCONG/57.2957795
DUNiI=V(1)

DuMzZ=vic)

DUM3=V(3)

DEFINE INITIAL FIELD LINE

CONTINUE

CALL INVAR (V(1),V(2),V(3),ERR,BDIM{(1),FIDIM(1))
I[f (KONTRL.EG..) GO TO 4

WRITC (6541) FLONG,FLAT,ALT

GU TG 5

WRITS (6,42) FLCNG,FLAT,ALT

DU €& J=2,JUP

ULAT=97.~-VN2(J)#57,2357795
OLCNG=VN2(J)*#57,2957795

IF (OLONG.GT.18..) OLONG=0LONG-36C.

IF (GLONG.LT.(=120.)) OLONG=0LONG+3&7%.

WRITE (6,43) JyVNI(J),ULAT,0LONG,B(J)

[F (VNL(J).GT.12.) GO TO i

CONTINUE

ERR1=J.. 1#ERR

{F (KONTRL.FEQ.1) GO TO 29

N=&

IF (JUP.LE.4) N=3

CALL TVAR (VNL1IN)»VNZ2IN)})sUN3IN),ERR,B2,F12)
SPATH(L)=FIDIM(1)+(FIDIM{1)=~FI2)#2,#8DIM(L)/(BDIM(1)-B2)
CALL EQUAT (VUNTAR(L1),VNEAK(2)sVNEAR(3) EWB,EALT ELAT,ELONGERR])
IF (EALT.GT.12.) GO TO 1}

EJALT=CALT

VN11=VMEAR(1)

VNi3=VNEAR(3)

RDIPOL=VNLL

Q=317 (RDIPOL*#3,

QG=C/EUB

SPITCH(1)=SQRT{1.-EQB/BDIM{1))

SALT(1)=ALT

SLAT(L1)=FLAT

SLONG(1)=FLONG

LCOP TO DETERMINE ALL I-BM POINTS ON THE INITIAL COMMON FIELD LIN
CORRESPONDING TO EQUALLY SPACED VALUES OF COSIPITCH ANGLE)
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IF (KMAX.EG.1) GC TO 8

DO 7 K=2,KMAX

COSPIT=COSPIT-CCCS

SSQ=1.,-COSPIT#CCSPIT

I[F (SPITCH(1).LT.COSPIT) SSQ=1.,-SPITCH(1)»SPITCH(1)
BO=EQB/SSQ

CALL BESECT (DUM1,DUMZ,CUM3,BALT,BLAT,BLONG,ERR])
JJ=Jupb-1

CUML=VN1(JY)

DUMZ=VNZ(JJ)

DUM3=VN3(JJ)

SALT(K)}=VBO(1)

SLAT(K)=90,.~-vB0(2)&57,2357795
SLONG(K)=VBO(3)#*57,2957795

IF (SLONGIK)GT.28i%,) SLONG(K)}=SLONG(K}-36i:.

IF (SLONGIK) LT+(-130C.)) SLONG{K)=SLONG(K)+36C.
CALL INVAR (VBO(1),VBO(2)yVBU(3)4ERRWBDIM(K),FIDIM(K])}
N=4&

IF (JUP.LE.s) N=3

CALL INVAR (VNIIN),VNZ(N)+VN2(N),ERR,B2,FI2)
SPATHIK)=FIDIM({K)+(FIDIM(K)-FIZ}+2.#BDIM(K)/(BDIM(K)~B2)
SPITCHIK)=SQRT(1.-£EQB/BDIM(K))

CONTINUE

ERR=ERR#47,

ERRL=ERR#J3,720.25

ERRZ=ERR#i;, 325

LOCP TO DETERMINE DRIFT VELOCITY ON THE INITIAL LINE
TO DETERMINE EQUATORIAL DRIFT VELOCITY IN CM/SEC MULTIPLY DRIFT BY
<5766 E 235 ® (RCIPUL®*%3) e (MASS IN ELECTRON MASSES) e (GAMMA) »
e (BETA=»:) ., BETA = V/C.

DO 9 K=1,KMAX

FISTAR=FIDIM(K)# .98

OALT=SALT(K)

OLAT=SLAT(K)

GLECNG=SLONG(K)

CALL SEARCH (OALT,OLAT,OLONG,BDIM(K),FISTAR+BB,FI,ERR,ZRRByERRI,RR
1)

IF (RK.GT."e€) GC TU 9

CALL EQUAT (VNEAR{1),VNEAR(2),VNEAR(3),EB.EALT,ELAT,ELCNG,ERR]L)
CIST=ABS{VNEAR(1)-VN11)
SORIFT(K)==(FISTAR-FIDIM(K))#QQ/(DIST#SPATH(K]))

CONTINUE

DO i3 K=1,KMaX

IF (SDRIFT(K) LT 1.E=05) SPATH(K)} =7,

CONTINUE

WRITZ (€144)

WRITE (6445) (K¢BDIM(K)},FIDIM(K)»SPITCH(K) sSDRIFT{K) SPATH(K),EQB,
1SALT(K) y SLATUK) yK=KMIN,KMAX)

IF (NOSPLT.EGQ.1) GO TO 24

CONTINUE

FLCNG=0ORLONG

KASE=1

B0 13 K=1,KMAX
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17

RCRIFT(K)I=""

ECALTIK)=1.1.
EQLCNG(K)=111
RPITCH{K)=",

ECBBRIK) =7,

-

LLCP TO DETERMINE [~BM POINTS AND SPLIT FIZLD LINSS AT NEw
LONGITUDEZ ORLONG

LU 17 K=KMIN,KMAX

IF (RLUSTTIK) «CTWe:e3) S0 TU ¢

CALL STARCH (ALT,FLAT,FLONGsBDIMIK) ZFIDIM{K) BB 4FI,ERR,ERRB,FRRI LR
iLCSTT(KY))

IF (RLUSTT( (K} CTL.a%) LO YU ¢

AKITE (6,546) KyUBDIMIK)

IF (LARSOILONG) oGT ol o) e AND (L LRI =ABSIFLONG))GTa"0)) GO TG 1S
va 14 J=2,J4UP

OLAT=3" =VN2(J)}#27,295779¢

OLCNG=YNA(J)®537,205779

IF (LLONG.GT L% 2e) ULONG=0LONG-35],

[F (CLONG.LTW(=-1"C0)) CLONG=ULONGH+36 .,

WRITE (4,43) JyVNL{J)yCLAT,0LUNGyB(J)

CONT[NUE

CONTINUE

N= 4

IF (JUPLZ.4) =3

CALL [INVAR (VAILIN) UNZIN) Yy VNI(N)yERR2,E2,FI2)

RPATHIK ) =FIDIMIKI+{FIDIMIKI=FIZ)#Z.eRDIMIK)/{BDIM(K)=-8])
CALL ZQUAT (VNSAR(L)yVANEAR(2)yVNCARL3) yZ0BAIK) yEQALT{K) ¢ELATLEGLON
LO(K)y2RRY)

RALT(K)=VSAVE(})

RLAT (K) =FLAT

RLCNGIK)Y=FLONS

RPETCHIK)=SART(L.-CCRB(K)/BDIM(K))

IF (K.FQ.KMAX) 3C TOU 17

BL=RCIM(K+])

IF (CQEB(K)GT.RE) BU=(BDIM{K)+ELBR(K))* ;.5

CALL BZSECT (VSAVI{1)sVSAVELZ)4VSAVEL3) jBALTBLAT,BLONGERRY)
ALT=VB3(1)

FLAT=8L AT

FLCNG=BLONG

GO TL .7

[F (KeCQoeKMIN) KASE=C

KK=K

[F (KASE.EG.LY GC TU 193

IF {kefWeKMAX) CC TU 17

Kl=K+{

ALT=SALTI(K1)=~1.

[F (ALY LT.1,) ALT=1.

IF (AT GT.5.) ALT=S,.

FLAT=ARS({SLAT{K1))=-5.

[F (ABS{SLAYT(K1)).LT.5.) FLAT=%,

CONTINVE

CC (n K=KMIN,KMAX

[F {(RLUSTT(K) LT, 0e03) w0 Tu 2.

CCATIUE
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e

G0 To &

DL 2. K=KK,KMAX

RLCSTT(K)I=Z.

CONTINUE -

LCOP TOU DETZRMINE DRIFT VELOCITIES AT SPLIT FIELD LINES

DU 22 K=KMIN,KMAX
IF (RPATH{K) JLELLeZ=17) GO TG 22
IF (RLUSTT(K)GTew1a5) 00 TU 22
VYN, Z=Z0ALT (K
VYNZS=EGLCNGIK) /5742557795
WGER/SURB(K)
FISTAR=FIDCIM{K)#1.98
UALT=RALTI(K)
ULAT=RLAT(K)
CLUNG=RLUNG(K)
CALL SHARCH (UALT,CLAT,0LONG»BDIM(K) FISTAR,BB,FI,ZRRyERRB,=RRI,RR
1)
IF (RR.CT.e8) GL TU 27
CALL cQUAT (VHNEAR(I)yVNEAR(2) 9 VNEAR(3) 458 EALTH ELAT,,ELCNGyERKY)
DIST=A3S(VNIAR(L)=Vill)
RERIFT ALD SORIFT HAVE AS COMMON FACTOR S.31/(RDIPCOLw#3)
RORIFT(K)=~(FISTAR=FIDIM(K)} ) #QU/{(DIST*KPATH(K))
CONT InNUE
CO 2 K=KkMIN,KMAX
IF (RERIFTIK) LT3 .6=.5) RPATHIK)= 1,
CONT [z
WRITL (5,47) AALT,FRONT,SHEETL,SHEET2,FSHEST
Wi ITL (5942
WRITE (6945) (KyBDIMIK)yFIDIMIK)yRPITCHIK) yRORIFT(K) 4RPATH(K)} ,F0RB
DKy HALTHLK) s RLAT(K) 3y K=KMINyKMAX)
WRITE (04949)
W ETe (2ys )
WRITTD (Ce21) (K, Z0LUNGIKY y 0ALT,ZQALTIK) ,SPITCHIK) ,RPITCH{K) ,SDRIF
IT(K) yRURIFT(K)yENZRGY (K )y KR=EMINyKMAX)
IF (ISTOR”.5GQ. ) Gu Tu 28
IF (KINTRL.ZIO, ) 6O T 24
S50 TO (:51:7'3")7 KUNTRL
FRCONT =FRCHNT~w I 0
SHIET1=S4 TL-STCGRM
FSHE T=FSHEST AL
KOwTRL= L

ERR=URNS 25
WRIT. (5952) FREONT,SHEZTL,FSHELT
GC Tu

FRUnT=ERCHT 44 INC

SHEZZT1=SHEET L+5TCR™
FSHILT=FSHEIT-FAIL
CRLCN3=CRLONG+1C 2,

KONTRL=

DS Zo KahMIN,KMAX

IF {KLOSTT(K)WCT.:.5) 00 TU Io
FISG=FIDIMIK)#F ICTMIK)
CC=ENZIRGY(K)+1,
CONST=(CC#CC=-1,)#FISQ
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23

NOOOOO

3)

31

32
33

SQBE= BOIM(K)=FISQ

LOOK SEARCHES FCR THE SHELL HAVING A PREFIXTD VALUE OF THE
THIRL INVARIANT, CCMPATIBLE WITH CONSERVATION OF THE OTHER TWO

CALL LOOK (SALT(K),SLAT(K),SLONG(K),SQBI,

IM(K)+ZRRyERRIyERRBy ERRFy PHI,RLOSTT(K))
FISQ=FIDIM{K)#«FICIM(K)
GAMNEW=SGRT{1.+CONST/FISQ)
ENERGY(K)=GAMNEW=1.

CONTINUE

WRITC (6953) FRCONT,SHEETL1,yFSHEET
IF (RLOSTT(2).GT.%.5) GO Tu li
ALT=SALT(2)

FLAT=SLAT(2)

GG TU 11
GRLCAG=0RLCNG+183.
KONTRL=3

I[F (NUSPLT.EG.1) GG TO 38
Gu TC 11

CONTINUE

ORLONG=CRLONG+LELTA

I[F (CRLONG.GT.TERM) GO TO 38
FLCNG=URLGONG

IF (RLUSTT(1).GT.3e5) GO TO 12
ALT=RALT (1)

FLAT=RLAT(L)

GG TU 1&

FLX(K)3BDIM(K) 4FIDI

POINTS HAVING THE PRZFIXED VALUES OF CONST=(l##2)«(GAMMA#®Z~1,)

ANC (I#%2)#BIARE DETERMINED ON THE DISTORTED

FIELD LINE

FI=FIDIM{1)

BB=BCIM(1)

FISG=FI*FI
CONST=FISQ#GSQML
COMP=FISQ#RB

KMIN=2

K=KMIN
FISC=FIDIM(K)*FICIMIK)
CONST=FISQ#GSQML
SQBI=BDIMIK)*FISQ

IF (COMP.TTITQRTY GO TOo 36
DO 32 J=4,JUP

IF (B(J).GT.B(3)) GO TO 33
CONTINUE

Jup=g-1

I[F (JUP.LE.4) STOPL
S1=VN1(2)

SZ=VN212)

$3=VN3(2)

SI=FI

SCOMP=COMP

DU 34 J=1,4UP
VNL(J)=VNi(J+]1)
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37

UYNZ(Jd)=VNZ(J+Y)

V3(J)=vNI(Jd+1)

BOJI=B(I+1)

BLCG(J)=ALGG(B(J))

ARC(J)I=ABS(ARC{J+1))

JLP=yguUP-1

DC 35 J=_,JCP

ASUM=AKC(J)+ARC(J+1)

DX=BLCG(J-1)-BLAGLY)

CN=ASUM#ARC(J ) #ARC(J+1)
BCC=({LLUG(J=1)1-PLOG(JI+1) ) %ARC(J)en-DX®ASUM%%Z) /DN
CCU=(DX#ARCIJI+1)-({BLOG(J)=BLOG({JI+1))#ACC(J)) /DN
SA=,T5#ARC(J)

SC=5A+,25#ASUM

DCC=PLUG(JU-1)-CCL=SA%SC

ECC(J)=BCO+CCuUr(SA+ST
BEG{J)=LEXP(DCU+ECO(J)»,5%ARC(J))
BENC(J)=EXP{DCCHECC(J )@, 5%« (ASUM+ARC(J)))
BEG(JUP)=RENDIJEP)

BENC(OJUP)Y=B(JUL)

ECCIIUP)=(2," JARCLJUP ) Y #ALUGIBEND(JUP) /BEG(JUP))
CALL INTEG (ARCHBEGyRENDyByJEPLECOLFLINT)
FI=FLINT

8B=2(2)

FIS(=F1#F1

COMP=FISu=BR

GO0 TC 31

SLCPZ=(SCBI-SCUMP)/(COMP~SCUMP)
SALT(K)=SY+{V¥N1{Z)=-S2)=SLOPE
CGVZUIKI=SZ+(VN2(2)~-S2)=SLUPE
GVIIR)=Sa3+(VN3(2)-53)=SLOPE

SI=SI+(FI-S1)#SLCPE
SLAT(K)Y=9 ¢, ~CVi(K)}*5T7,2957795

SLCNGIK)I=GV3I(K) #5T7.2957795

IF (SLONG(K).GEeiB " 4) SLONG{K)=SLONG(K)-363,

IF (SLONGIK) LT e=18%,) SLONG(K)=SLONGI(K)+18J.
FISG=S1=S1 )

GAMNEW=SORT(L.4CCNST/FISQ)

ENERGY(K)=GAMNFW-1,

FICIM{K)=SI

SIT=ABS{SIN(QVZ(K)))

CALL MUDHMAG (SALT(K)sSIT,GV3(K)sBR,BT,BP,BBB,QV2(K}}
BDIM(K)=8BER

K=K+

IF (K.LELKMAX) GC TU 3%

CALL EQUAT (VNZAR(1),VNEAR(Z2),VNEAR(2),EQB,EALT,ELAT,ELONG,ERRL}
DU 27 K=KMIN,KMAX

RLOSTT(K)=" 4

CALL FLUX (FALT,FLAT,ELONGySALT(K) sSLAT(K),SLONG(K)} BDIM(K),FIDIM(
1K)y FLX{K) s ERRyZRRB, ERRIZRLOSTT(K]})
SPITCH(K)I=SQRT{1.-2QB/BDIM(K]})

WRITE (6,54)

WRITE (63445) (KyEDIM(K)FIDIM(K),SPITCH(K) 4FLX{K) ENERGY(K) ,EALT,S
LALT(K) g SLAT{K) »K=KMINyKMAX)

ERR=LERR %4,

ERRI=CRR*J.,307¢5
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ERKZ=ERR#J.D25
ALT=SALT(Z2)

FLAT=SLAT(2)
FLONG=SLONG(2)

IF (NCSPLT.EQ.1) GO TO 25
GO TO 11

ERR=ERR #(, 125

G0 Tu 1

FORMAT (4F1).4)

FORMAT (I5,3F1%.2)

FOKMAT (29H OISTORTED COMMON FIELD LINE/40OX,3F15.2/7/)

FORMAT (1X///727H INITIAL COMMON FIELD LINE/4CX,3F15.2/77)

FORMAT (15,F15.49F1lU.29F15.2,E20.5) » o
FORMAT (1X///2Xy1HKy9X4HBDIM) 12X, SHFIDIM,9X,6HSPITCHs9Xy6HSDRIFT,
19X, SHSPATHy 11X 4FEQB 49X, 4HSALT ,4X,4HSLAT/)

FORMAT (I3,F15.694F15.44F15.695%X42F7.2//7)

FORMAT (/27H SPLIT FIELD LINES/I20,Fiue8/)

FORMAT (1X//50XySF10.2//7) ‘ o

FURMAT (2X s 1HK 39X, 4HRDIMy 12Xy SHFIDIMy9X s 6HRPITCH9X s 6HROREFT 39X 5H

LRPATH, 11Xy 4HEQRB,9X,y4HRALT,4X,4HRLAT/)

FORMAT {28X,26HSHELL SPLITTING PARAMETERS//) o o
FORMAT (2Xy1HK,4Xy 6HEQLONG, 12Xy 11HEARTH RADII,16%,9HCOS PITCH,13X,
114HDKIFT VELOCITY,13X,6HENERGY/)

FORMAT (13,F13.2+5X92F10.3,5%,2F10.3,2E15.3,F14.67777

FURMAT (2X//27TH WIND AND STORM ARE RAGING/S50X,3F20.2/)

FORMAT (2X//21H SPACE IS CALM AGAIN/SUX,3F20.2/7) 77

FURMAT (1X///72Xs1HK 59Xy 4HBDIM, 12Xy SHFIDIMy9Xs6HSPITCH,9X36H FLUX
19Xy SHENERGy 11X 9 4HEALT ) 9X 9 4HSALT 46Xy 4HSLAT/)

ENC

A 393
A 394
A 395
"AT396
A 397
A 398
A 399
RLHY
A 401
N AV
A 403
A 406
A 405
K uhe”
A 407
A 408
A 409
‘A 410
A 411
L 3va
A 413
N ale
A 415
A 416
A 417
A1
A 419
A 420
A 421
A 422
A 423-
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SUBROUT INE SEARCH (ALT,FLATsFLONG,SB+SI1+8B,FI,ERRsERRB,ERRIRLOST)
COMMON B(292),VNLG20G) o VNZ2(20:5) VN3 (20C) ,ARC(2GC) ,VNEAR(3) ,VBU(3),

1VSAVE(3)4B0yBNEARLJUP MMM
COMMON FRONT,SHEET1,SHEET2,FSHEET

SUBRCGUT INE DEFINES FIELD LINE GOING THROUGH POINT GF_ PREFIXED
B AND SECOND INVARIANT I s AT A GIVEN LONGITUDE

DIMENSION VI(2), V1I(3), V2(3)

DV=u1,32

RLOST=3.

MCHECK="

ICHECK=2

SERR=ERR

SERKRB=ERRB

SERRI=ERRI

VIL)=ALT

IF (V{1).LT.2.5) GO TO 11
VI{2)=(92.-FLAT)/57.2957795
V{3)=FLONG/57.2957795

DCLT=1.5738

ICON=1

ILIT=}

DELVZ=DV

ICHECK=TCHECK+}

IF (ICHECK.GT.2y) GO TO 12
SIT=ABS(SIN(V{(2)))

CALL MODMAG (V(1),SIT,V(3),BR,BT,BP,BB,V(2))
FAC=1.-(SB-BB)/(3.%58)

IF (FAC.GT.1.5) FAC=1.5

IF (FAC.LT.".666) FAC=".6606
VIL)=V{l)=FAC

IF ((VI{1).6Tal02.).0R(VI1)LLT.2.5)) GO TU 11
vi(li=v(l)

Vi(2)=v(2)

MCHECK=MCHECK+1

IF (MCHECK.6T.15) GO TO 13

CALL MODMAG (V(1),SIT,V(3),BR4BT,B8P,BB,V(2))
IF {(ABS({BB-5B8)/SB).GT.ERRB) GO 7O 3
MCHECK=y

IF (ILIT.NE.Y) GG TO 7

ILiT=2

CALL INVAR (VIL1),VI(2)4VI3),ERR,BB,FI)
IF {(JUP.LT.3) GO TO 14

v2{1)=vi(l)

va(z)=vi(2)

BZ=88

FI2=FI

IF (ABS{(FI-SI)/SI).LE.ERRI) GO TO 8
IF (ABS({V(2)-DCLT).LT.N.1) GO TO 6
SGN=SIGN{l.,(FI-S1))

IF (V(2).,LT,DCLT) GO TO 4
DELV:=-SGN#DELVZ

GO TC 35

DELV2=SGN*DELV2
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VIZ)=vlc)+DELVZ

GO TC =

V{Z)=VIlz)+CELVZ

CALL INVAR {V(1),VI2)4V(3),ERR,BByFI)

IF (JUP.LT.?) GC TG :i4

IF ((FI=-SI)#(FI-FIZ).LE.Ds) O TO 2

VI2)=V(2)-2.%DELV2

60 TU 2

B1=8H

CALL TAHVAR (VI1),V(2)sV(3)4ERR,BB,FI)

IF {(JUP.LT.') GC TO 14

IF (ABS{(FE=-ST)/SI).LE.ERRI) GO TO 8

FACT={SI-FI)}/(F1Z—-FI)

IF (ABS(FACT).GT.3.,) FACT=3,#SIGN(Ll.,FACT)

VIZI=Vil()+lvZ{)=-Vi{1))»FACT

VIZ)sVI(2)+(VZ2(2)=V1{2))=FACT

Y=AMINL(ABS{V(Z)=-V1(2)),A8S(V(Z)-Vv2(2))]})

IF (Y.GT.ABS(VI(Z)=-VZ{Z)})) GU TO L

bDv=Y

GO TC 2

CONTINUE

IF {ICUNJ.EQec) GC TO 9

ICCN=2

DV=LvVs_.1i

ERKR=ZRK#,_,:25

ERRB=ERRD#*#I .. 5

ERRI=ZRRI*#" ., 4

GC TC .

ALT=v(l1)

FLAT=3:-V(2)257.2957735

FLONG=V(3)#57,:957795

IF (FLUNG.GT.1A3.) FLCNG=FLONG=36", .

IF (FLONGeLT«(=1FD4s)) FLONG=FLLNG+367.

CC 1% I=1,3

VSAVI(I)=Vv(I)

GO TC 16

WRITE (6417) VIL)4FLAT,FLONG

GO TC !5

WRITEZ (6,18) ICHECK

GG TC 1

WRITE (€+19) ICHECK,MCHECK
(

(S s SR V)

66 TO
WRITE
JupP=1
KLCST=1.
ERKk=SERR
ERRB=SCRRA
ERRI=SERR]
RETURN

Lg]

1<) ICHECK,MCHECK,ALT,FLAT,FLUONG

ALT QUT OF LIMITS/2F1v.3)

FORMAT (19H
(51H SCRRY,BUT I CANNCGT FIND THAT DAMN PUINT IN ICHECK/2I1

FORMAT
17)
FOKMAT (S1H SORRY,BUT 1 CANNUT FIND THAT NDAMN POINT IN MCHECK/2I1
17)

FORMAT (4H SCRRY,BUT POINT IS IN THAT DAMN POCKET/2I17,3E15.5)
END
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SUBRUUTINE LOOK (ALT,FLAT4FLONG,SQBI»
1RT,ERRB4ERRF,PHI,CUTL)

COMMON B(203) 3 VNLIL200),UN2(2G0 ), UN3(282) 4ARC(2NC) 4 VNEAR(3),VBO(3)

1VSAVE(3),B0yBNEAR, JUP, MMM

COMMCN FRONT, SHEST1,ySHEET2,FSHEET
IF (THIRDLLE.D.) 60 TO 7
ERRI=ERR#D 0.

CUTL=u.

ICCUNT=L

CONTINUE

THIRD,BMIRGFIMIR,ERRSER

CALL SEARCH (ALT,FLAT,FLONGyBMIR,FIMIR,BB,FIERR,ERRIERRB,RRY

IF (RR.GT.C.5) GG TO 7

CALL EQUAT (VNEAR(1),VNEAR{2)sVNEAR{ ) EQB,EALTLELAT,ELONG,ERRIY
CALL FLUX (EALT,ELAT,ELONG,ALT,FLAT,FLONGsBB,FI4PHIERRyERRB;ERRI,

1CUT})
IF (CUT.LT.0.5) GO TU 2

1IF (ICOUNT.EQ.3) GO TO 7

FAC=FAC*).5

FIMIR=FOLD

GO TU 5

DPHI=THIRD-PHI

IF (ABS{DPHI/THIRD).LE.ERRF) GO TO 9
IF {(ICOUNT.GT.?) GO TO 3
FAC=-1./{12.56+*EALT*EQB)

GO TC 4

FAC=(FOLD-FIMIR)/(POLD-PHI)
FOLD=FIMIR

POLC=PHI

SUM=CPHI#FAC

IF (ABS(SUM/FIMIR).LT.5.1) 6O T0 6
TF (ABSUSUM/FIMIRY (GTL1D.) FACSFAC#*J.1
FAC=FAC*>.5

60 TG 5

FIMIR=FIMIR+SUM

FISQ=FIMIR®*FIMIR

BMIR=SQBI/ FISQ)
ICOUNT=ICOUNT +1

IF {(ICOUNT.EG.9) GO TO 8

GO TG 1

WRITE (6410}

CUTL=1.

GG TO 9

WRITE (&,11)

CUTL=1.

RETURN

FORMAT (24H ~NOT ACCESSIBLE IN LOOK)

FORMAT (39H [ CANNOT FIND THAT DAMN SHELL IN LOOK)

END’
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SUBRCUTINE FLUX (XEALT o XELAToXELONGyXALTyXLATXLONG 8MIR,FIMIR,THI
1KDy SRRy ERRByERRI,CUT)

COMMGON B{203) 9 VNLL{Z20)) 9 VN2(200) o VN3(2CU) »ARCL2DD) 9 VNEAR(3) ,VBO(3 ),
1LVSAVE(3),B0OyBNEAR,JUP ) MMM

COMMON FRONT,SHCET1,SHEET2,FSHEET
CUT=",

THIRD=",

KOUNT=L

CALT=XEALT

ELAT=XULAT

ELCNG=XELONG

SALT=XALT

SLAT=XLAT

SLCNG=XLCNG

ERRL=ERR# 1,01

DL=3..

CALL VECPOT (EALT,ELAT,ELONG,APHI)
S1=FALT #APHI

SD=SLONG/57,.,2957795

IF (SC) 243,53

SD=ST+6.233165337

GO TC |1

IF (SC-€¢.283185337) 5,544
SD=SL-6.2831853)7

GO TC 3

CONTINUE

SLCNG=SLONG+DL

KOUNT=KOUNT +}

IF (KCUNT.GT.6) GO TO 13

CALL SSARCH (SALTySLAT,SLONGsBMIR,FIMIR,BB+FI,ERR;CRRB,ERRI RR)}
IF (RR.GT.w1eB) GC TU 12

CALL EQUAT (VNEAR(1),VNZAR(2)yVNEAR(2),EQB,EALT,ELAT,ELONG+ERRL)
CALL VECPOT (SALTLELAT,ELONG,APHI)
S2=EALT#APHI

SSO=VNEAR(3)

IF (SSD) B,49,9

SSD=SS0+6.,2831852307

GO TC 7

IF (SSN=-€.2831685327) 11,11,1iC
$SSD=55D-6.2831853(07

GO 140 9

CONTINUE

DEL=ABS(SSD-SD)

SD=SSC

THIRC=THIRC+(S1+S2)#DEL*Q.5

S1=S2

GO TC 6

WRITE (6,14)

CuTt=;.,

RETURN

FORMAT (22H INACCESSIBLE IN FLUX)
ENC
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SUBRCUTINE VECPCT (RO, ELAT,ELONG,A)

COMMGN BI(22D)sVNL1L2CL),VNZI20C) N3 (2TC) JARC(20G) ,VNEAR(3),VBOI3),

1VSAVE(3),B0,BNEAR, JUPy MMM
COMMON FRONT,SHEET1,SHEETZ,FSHEETY
=0.31
ONG=ELONG/57.2957795
IF (CNG) 2,3,3
ONG=CNG+6.282185207
60 TC 1
IF (ONG=-6.2921853C7) 5,5,4
ONG=CNG=-€.283185347
GO TC 2
CONTINUE
R=l.
OV={(RO-1.)#). 005
R2=R+0V#Z,5
VLAT={9G.-ELAT)/57.2957795
SIT=ABS(SIN(VLAT))
CALL MODMAG (R2,SITyONGyBR,BT+BP,BBsVLAT)
A=A-ABS (BT )#R2#CV
R2=RZ+DV
IF {R2.GT.RO) GC TG 7
GO TC 6
A=A/RO
RETURN
END
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SUBRCUT INE EQUAT (CUM1,DUMZ2,DUM3,EB,EALT,ELAT,ELONG+ERR)

COMMUN B(20U )y YNLG20351»VN2(2DC ), VN3{200) ,ARC(200) ¢VNEAR(3),VBO(3),
1VSAVE(3),B0y BNEAR4 JUP ¢ MMM

COMMON FRONT,SHEET1,SHEETZ,FSHEET

SUBRCUT INE TRACES FIELD LINE FROM A GIVEN POINT TO MINIMUM 8
MINIMUM B POCKETS AT HIGH LATITUDES ON NOON SIDE ARE IGNORED

DIMENSION V(2,3), VYN{3}, VP(3), R1{3), R2{(3}, R3(3}
ERR1=ERR

MMM=1

JupP=_

V({l,2)=0UM1

V(2,2)=DUM2

VI2,5)=DUM3

ARC(1l)=¢.

OCLT=1.5708
ARC{z)=V{1,2)*SCRT(ERR)*#{.3

IF (v(2,2)-DCLT) 2,3,3
ARC{2)=-ARCI(2Z)

CALL START (R1,RZ4R3,B,ARC,ERR,V)
IF (JUP.LT.D) 60 TO 5

DG & I=1,3

VP(I)=V(I,2)

VN(T)=v(1,3)

CALL LINES (R14R24KR3,ByARCyERRyJyVP4VN)
IF (J.LT.207) GO TO 7

ERR=4,#CRR

GO TU ¢

JHIP=1

ERR=ERR#t .1

CONTINUE

WRITE (&,8) ERR

GO Tu 1

ERR=ERR L

EB=BNEAR

EALT=VNEARIY)
ELAT=90.-VNEAR(2)#57.,2957795
ELONG=VNEAR(3)#57,2957795

IF (ELOUNG.GT.18Z,) ELONG=ELONG-360.

IF (ELUNG.LT.(-185.)) ELONG=ELONG+369.
RETURN

FORMAT {24H ERRCR CHANGED 1IN EQUAT,E1l5.4)
ENC
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SUBROUTINE BESCECT (RUM1,RUM2Z2,RUM2,BALT,BLAT,BLONG,=RR)

COMMUN BLZI0) g UNLEZD ) o VNZL2ZDC) yUNB(22) 9 ARC(2:5C) y UNEAR(3) 4VB0O(3),
IVSAVE(Z) B0y BNEAR, JUP, MMM

COMMCN FRONT,SFEET!,SHEETZ,FSHEET

SUBRCUTINE TRACES FIELD LINE UPWARDS FRCM A GIVEw POINT UNTIL
A PREFIXED B-VALUE 1S KEACHED

DIMENSIGH VI2,2), Viil(3), VP{3), R1(3}, R2(2), R3(3)
CRRI=LRR

MMM=3

Jup=_

V{i,2)=RUM]

Ve Z)=RUME

V(3,.)=RUM3

ARC(Z)=..s

DCLT=1.578
ARC(Z2)=V(1,2)#SCRT{ERR)#D,3

IF (VI2,2)-DCLT) 3,2,2
ARC(.)==-ARC(Z)

CALL START (R1,R¢3R34ByARC,ERR,V}
IF (JUPLLT.D) GO TC 5

00 & I=1,3.

VP(I)=VI(I,2)

VN(T)=vI{T,3)

CALL LINES (RL14R2yR34ByARC,ERRyJyVP,VN)
IF (J.LT.227) GC TO

ERR=4 ,#ERR

GO TC 5

Jup=_

ERR=ERK#T, 1

CONTINUE

HRITE (6,8) ERk

50 TU &

ERA=CZRK1

JupP=J

BALT=VBUO(1)#6371.2
BLAT=923.-VBO(2)%57.2357795
BLONG=VBG(3)%#57.295779¢

IF (BLONG.GT.1%.) BLONG=BLONG-36{.
IF (BLONG.LT,(=-18%.)) BLONG=BLONG+362.
RITURN

FUKMAT (24H ERRCR CHANGED IN BESECT,E15.4)
ENC
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. SUBRCUTINE INVAR ([CUML1,DUMZ,DUM3,ERR,BB,FI)

COMMEN B{2007) g UNTL20 D), VNZL2C0) g UN3(202) »ARC(22C) , VNEAR(3) ,VBO(2),

IVSAVZI(Z)+80,)BNEARyJUP MMM
COMMCN FRONT,SHEET1,SHEET2, FSHELT

SUBROUT INCS INVAR,START,LINES AND INTEG ARE BASED CN MCILWAINS

INVAR COOE

DIMEANSION VI(2,42), VN(3), VP(2), BEG(ZO:)y BEND(20J),

10(2%0 )y RLI(3)s R2L3), R3(3)

MMM =

Juo=1

V(l,2)=0UML

VI{Zy2)=PLUM2

VI3,2)=DUM3

CRRI=EKR

ARC{L)=7,

ARC(:)=V{1,2)2SCRT(ERR)#% .3

OCLT=1.57.8

IF (V(242)-DCLT) 243,3

ARC(2)==-ARC(Z)

CALL START (R14R24R3,ByARC,ERR V)

IF (JUP.LT,.)) GO TU 8

CO 4 1=1,3

VP{I)=v(I,2}

YNCE)=V(T,3)

CALL LINES (R1yR2yR3yB,ARCHERRyJyVP,VN}
IF (JTe22) GC TO 5

ERR=CRR#4,

WRITE (6,9) ERR

GO TG °

ERR=ERR]

JupP=J

DO & J=1,JUP

ARC{J)=ABS(ARC(J))

BLCG(J)=ALOG(B{J))

JEP=JUP~-1

DO 7 J=Z,JEP

ASUM=ARC(J)+ARC(J+]1)
CX=8LOG(J-1)~-BLCCLJ)
DN=ASUM#ARC(J)}#ARC(J+1)
BCO=({BLOGIJ-1)=BLOG(J+1))#ARC(J)##2-DX#ASUM#=2) /DN
CCC=(CX#ARC(J+1)-(BLOG(J)=BLOG(J+1))=ARC(J)})/ON
SA=,73=ARC(J)

SC=SA+,25#ASUM

DCC=BLOG(J-1)-CCC»SA=S(
ECU{J)=BCO+CCO#(SA+SC)
BEG(J)I=EXP(DCO+ECC(J)* 5#ARC(J]))
BENC({J)=FEXP{DCO+ECC(J)#.5#«(ASUM+ARCI(J)))
BEG(JUP)=RBEND(JEP)

BENC(JUP)=B(JUP)
CCOGJUP)=(2.2/ARCIJUP) ) »ALOG(BENDIJUP) /BEG(JUP))
CALL INTcG (ARC+HEGyBENDyB,JEP,ECO,FLINT}
FI=FLINT

eB8=81(7)

CONTINUE

RETURN

FORMAT (26H ERROR INCREASED IN INVAR,E15.4)
ENC
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SUBKCUT INE START (R1,RZyR23,B4ARC,ERR,V)
COMMCN B(2.00) g UNLTL227) o UNZLZTO)YyUNS{200) 9ARC(Z1Y) s VNEAR(3) ,VBO(3),
LVSAVE(5),B0y BNEAR,y JUPy MMM

COMMCN FRONT,SHEET1,SHEETZ2,FSHEET
DIMENSION V(343)y K1(3)y RZ2(3), K3(3)
LOGP=1

SIT=ABS(SINIV(Z,2)))

IF (VI{3,2)) 2,342
VI{592)=VI3,2)46.282185337

GO TC

CALL MODMAG (V(192)sSITaV(342)30KkeB8TsBPB8(2)VI(2,2))
Rz{1)=BRrR/B(2)

DN=B(Z)=#y(1,2)

RZ(Z)=BET/GN

RzZ{3)=BP/(CN=SIT)

IS=,

U 5 I=1,3

V{Iyi)=aV(I,2)-ARCLZ)=R2(])
SIT=ABS{SIN(IV(2,1)".

CALL MUDMAG (V,SIT,VI(3,1),BR,BT,BP,B(1),V(2,1))
IF (B(1)-8B(2)) 7,8,¢8

ARC(2)==-ARC(.)

IF (LCUP.EG.2) GC TU 12

LOCP=2

o0 TC 4

R1(1)=Br/B{1)

ARC({3}=ARC(2)

DN=B(1)=V{i,1}

R1(2)=6T/DN

RL(3)=BP/(CN=SIT)

DO 9 I=1,3
VII,31)=V(I,2)=-ARC{2)=(RYI(I)+R2(I})/2.
SIT=AB8S(SIN(VI(Z,1)))

I1S=1S+1

50 TC (6427, IS

30 .1 I=1,3
f{La2)=VIL2)+ARCLZ)#{(1.,5)%R2(1})-5%RI(]))
50 Tu 13

JUup==-}

CONTINUE

RETUKRN

EA“D
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SUBROUTINE LINES {(R1,R2,R3,8,ARC,ERR,JyVP,yVN)

COMMON BUZ o2 )y UNYLDD d g VNEL2070) g UNZL 20} s ARCL200) s VNEAR(3) 4 VBOI3)
LVSAVE(3),B0y BNCAR, JUP MMM .
CCOMMON FRONT o SHEZT),ySHZET2,FSHEET

INTEGER FLAGL,FLAG?
DIMENSTUN R1(3),

M=MMH

FLAGI=
DEL=Ua0 1
CRE=,..5

IF (ERk=: 415625}

R2(3)y R3{3),

1124¢

CRE=(ERR=2#’ 333323233}

A3=ARC(2)
AAB=ARS { A3)
SNA=A43/A4A8
AL=ARC(1)
A2=ARC(Z)
ACS5=A3=#A2/6,.
VNL(Z)=VvP(1}
VN2 (z)=VvP{(2)
VN3(2)=vr(3)
J=2

ILe=1

[S=1

GO0 Ty @

[S=3

J=Jd+l
AC6=A3%A3/6,.0
ARCJ=AL+AZ+AZ

AD=(ASUM+AL )/ AA

BDO=ASUM/ BB
CD=ai/CC
DO 7 1=1,3

DO=R (1) /7AA=-R2{T1)/8BB+R3{1)/CC
GU TC (S84%6),y IS
RT=Ri({I)-(AD#RI(1)-BD#R2(1)+CD«R3(1)-DD#ARCJ)#ARCY

RACTI)=R1(T)
RLOD)=R2(I)
R2(I)=R3(T)
R3I(1)=RT

VPIT)=VN(T}

RBAR=(RZ(I)+R3(1))/2.-DD»A0G
VN(I)=vP(T)+A3=RBAKR
IF (YN(Z)) 9,17, 1)

VN(Z2)==VN{(2)

I[F (VN(2)-3.,141592653) 12,12,11
VNIZ)=64283165227=-VN(2)

GO TL 1
IF (vni2)) 12,

l4y14

VN{2)=VN(3)+46.282135397

50 Y0 12

[F (UN(3)-6.2821R53.7) 16,16,15
VN(3)=UN(3)=6.282145327

ol TC 14
GO TC (17,120

LB

VN(3)
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25

SIT=ABS(SINIVN{(2)))
PRE1=VNI(1)

PRE:Z=PREL#VN(2)
PRE>=PRE1#SIT#VN(3)

CALL MOCMAG (VN,SITsVN(3),BR,BT,8P,B{J),VN(2))
R3(1)=BR/B(J)

DN=R{J)*ViN(1)

k>{2)=BT/DN

R3I()=BP/INNSTIT)

ASUM=AS+A7

AA=ASUi=AZ

38=A3#A72

CC=ASUN=AS

1S=2

GO TU 4

SIT=ABS(SINIVNIZ)I})

IF (VN(1).GT.8.) GO TO 19
B(J)=B(J)* ((PREL/VN(1))n%Z)
IF (MJEGQWL) GC TC &3
GRT=.5#ARS(R3(I)I/{.L+ABSIR3(2)eVN(1)))
X={ABS(VN(1)=-PRELI)I+QRT#ABS(VN(1)%VN(2)-PRE2)+ABS({VN(1)#SIT*VYN(2)~P
IREZR} )/ (AAB#ERR#SCRT (L +QRT*0ORT))
GU TC (23427923 )y 1ILP

[F (X=3,3) 23,21,21

A3=AS# (2% (8. 44X )/ (. .84X)
J=J-i

ILP=>

ASUM=A2+AL

AA=ASUM=A]

BB=AZ=A_

CC=A5UM=A2

CO 22 1=1,23

VN({T)=vPL(I])

RE(I)I=R2(1)

Rel(l)y=Ri(1)

RI(I)=xaA(I}

60 Tu 35

VNZ(Jd)=ViN{L)

VNa (J)=VYN(2)

VN3 (J)=VN(2)

IF (M.EC.3) GO TC 27

IF (8(J=-1).GT.B(J)) G0 TO &9
IF (ABS(VNZ2{J)=1.57).GT.2.26) 60 TO 29
IF (MeEQ.L1) GO TG 25

IF (FLAGL.EN.1) GO TC 29
FLAGL=1

CU 24 I=1,3

VNEAR{T)=VN(T)

BnEAR=B(J)

GO0 TC %3

BNEAR=B{J=-1)

CO Zec I=1y3

VNEAR(I)=VP(I)

Gu Tu 37

IF (B(J).GT.FQO) GO TU 29
FAC={BG-R{J4=-1))/{(B(J)-R(J-1))
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28

29

30

31
33
34
35

36
37

CO L& 1=1,3
VBCUI)=VP(I)+{VN(I)=VP(I))*FAC
ARC(J)=ARC(J)*FAC

8(J)=80

VNZ(J)=VEGI(1)
VNc{J)=VEA(2)
VN2{J)=VEBO(3)

GO TC 37

IF (JoGEW2) ) GC TO 27
Al=Al

IF (MJNE.) GO TC =0

IF (BLI)I-B(2)) 3.,ZL,24
ILP=¢

A2=A2

IF (MsEQ.Ll) GO TC 35
A2=A3%,22(85.+X)/(.24X)
AM=(Lo=R3(Z)#VN(1))=VN(]1)#CRE
IF (ABS(A3)-AM) 32,32,31
A3=SNA#AM

IF (SNA®#RZ(1)+.5) 33,33,35
AM==-,5#SNA#VYN{1)}/R3(1)

IF (ABS(A3)-AM) 35,35,34
A3=SNA®AM

ARC(J+1)=A3

AABR=ABS (A3)

GG To 5

CONTINUE

RETURN

END
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SUBRCUTINE INTEG (ARCsBEGsBENDsB,JEP+ECO,FI)
COMMON B(207)»VNLLZ2D2),VN2(2CC),VN3(200),ARC(2D0) VNEAR(3),VBO(3),

LVSAVE(3)4B0)BNEARS JUPy MMM

COMMON FRONT,SHEET1,SHEET2,FSHEET
DIMENSION BEG(Z2%)s BEND(Z200), ECO(2(9)
KK=JZP

IF (KK=4) 34244

KK=KK=1

A=B(KK-1)/8(2)

X2=B(KK)/B(2)

X3=B(KK+1}/8{2)

ASUM=ARC{KK)+ARC(KK+1)

DN=ARCIKK} #ARC(KK+1)#ASUM

BB=(-A# ARC(KK+1)#[ ARC{KK)+ASUM) +X22ASUM%#2-X3#ARC (KK)#%2) /DN
C=(A#ARC(KK+1)-X2#ASUM+X 3% ARC(KK)) /DN
FI=1.579796326#(1.-A+BB*BB/{4.%C))/SQRT(ABS(C))
RETURN

T=SGRT(1.-BEND(2)/B(2))
FI=(2.#T-ALOG((1e+T}/(2.=-T)))/ECUB(2Z)

IF (B(Z)-BEND(KK}) 646455

KK=KK+1

T=SCRT(ABS(1.0-BEGI(KK}/B(2)))
FI=FI-(2.#T-ALCG((1+T}/{1e-T)))/ECO(KK)
KK=KK=~3

DO 15 I=3,KK

ARGl=1.-BEND(I)/RL2)

IF (ARGl) 747+8

TE=1.E-5

G0 TC 9

TE=SQRT{ARG1)

ARG1=1.-BEG(I)/B(2)

IF (ARGY) 11,111,110

TB=SQRT (ARG])

GO TC 12

TB=1l.E-5

IF {(ABS{ECO(I))=-2.E=-5) 13413414
FI=FI+({TE+TB)=(ARC(I)+ARE(I+1))) /4.

GO TU 15
FI=FI4(2.%(TE=-TB)-ALOG({1++TE)*(1e~-TB)/((1.~TE)=(1.+T8)))}/ECOLI}
CONTINUE

RETURN

END
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SUBROUTINE MODMAG (RR,SINTH,PPH!,BR,BTHETA,BPH!,BB,THET)

SUBROUTINE MODMAG (RWSINTH,PPHI,BR,BTHETA,BPHI,BB,THET)
COMMON FRONY,SHEET1,SHEET2, SHEET

SUBROUTINE ASSEMBLES MAGNETIC FIELD FROM TAIL, MAGNETOPAUSE AND
INTERNAL DIPOLE - FOR ENQUIRIES WRITE To GIi BERT MEAD, GODDARD
SPACE FLIGHT CENTER, GREENBZ|T MARYLAND 20771

DIMENSION GG¢(7,7)
DIMENSION G(7,7), CONBT(7,7), P(7,7), DP(7,7), SP(7), CP(7)
COSTHECOS(THET)
SINPHls-SIN(PPHIS
COSPHIs=COS(PPHI)
RO=FRONT

R1i=SHEETY

R2=SHEET2

BCSxFSKHFETY

I[F ¢JFIRST-13) 1,5,1
JFIRSTH13

SET UP INITIAL CONSTANTS THE FIRST TIME AROUND

D0 2 N=t,7
DO 2 M=i,7
GG(N,M)=0,
NMAX=?

THE FOLLOWING COEFFICIENTS ARE SrWMIDT=~NORMALIZED

GG(2,1)»=0,25111E5
GG(3,2)s»0,12424E5
GG(4,1)s«0,00716ES
GG(4,3)s=0,02333E5
6G(5,2)2-0,02397E5
GG(5,4)x=0,00163E5
GG(6,1)=0,00569E%
GG(6,3)a=0,01078E5
GG(6,5)a=0,00103E5
GG(7,2)=0,00126ES
GG(7,4)=-0,00187E5
GG(7,6)2=-0,00041E5
Pil1,1)81,0

DP(1,1)=20.

§P(1)u0.

CP(L)xy,

DO 3 Ne3I,NMAX

FNzN

N2=N=2

DO 3 M=miy,N?2

FMeM
CONSTU(N,MIS((FN-2,)0¢2e(FM=1,)292)/((2,eFN=3,)#(2,+FN=-5,))
DIMENSION SKMIDT(7,7)
SHMIDT(1,1)81.0

00 4 N=z2,7

FNsN
SHMIDT(N,1)RSHMIDT(N=L,1) (" N+FN=3,0)/(FN=1,0)
FACTw2,0

DO 4 Mm2,N

FMeM

SHMIDT(N,M)BSHMIDT (N M=1)@SART((FN-FM+1,0)eFACT/(FNoFM=2.0))

60
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FACT=41.0

IF (RJ'ROOLD) 6,9,6

RO0LD=RO

DIMENSION FAC(T7)

FAC(2)3R0O*w3

D3 7 N=z3,NMAX

FAC(N)=RO*FACIN-1)

DO B N=z2,NMAYX

DO 8 M=z1,N
GIN,MYsSHMIDTIN,M)*G3(N,M)/TAC(N)
CONTINUE

BEGIN CALCULATION FOS SPECITIED INPUT

CT=COSTH
ST=SINTH
SP(2)aSINPHI
CP(2)=CNSPHI

CALCULATE SIN(M*PHI) AND COS(M+PHI)

DO 10 M=3,NMaAX
SP(M)3SP(2)¥CP(M=1)+lP(2)*57(M-1)
CPIM)=CP(2)*CP(M=-1)=-3P(2)#S3(M-1)
RsHR

Asl,

RAzR/A

ROA=1,

BR=0,

BTHETA=zD,

BPHI=0,

FNst,

CALCULATE SPHERICAL +ARMONICS FOR CAVITY FIELD

DO 16 Nz2,NMaX
SUMR=0,
SUMT=0,
SUMP=0,

FMz0,

DEVELOP LEGENDRE FUNCTIONS AND THEIR DERIVATIVES BY RECURSION FOSM

DO 15 M=z1.,N

IF (N=M-1) 13,12,11
PIN,MISCT#PIN-1,M)=CONSTUIN,MI¥P(N=2, M)
DP(N,M)=CTeDP(N=-1,M)-ST*P(N-1,M)=CONSTIN,M)«DP(N=2,M)
GO TO 14

PIN,MIZCT*P(N=1,M)
DPAN,MY=CT«DP(N-1,M)=ST*P(N-1,M)

GO TO 14

PIM,N)=ST«P(N~1,N-1)
DPIN,N)=ST#DP(N-1,N=-1)+CT#P(N~1,N=1)
CONTINUE

TSzG (N, M)Y«CP (M)

SUMR=SUMR«PIN, M) TS
SUMT=SUMT«DP(N,M)*TS
SUMP=SUMP+FMaP (N, M)*#3(N, M) *32(M)
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FMz=FMel,

CONTINUE
BRzBR=ROA*FN«SUMR
BTHETAZRTHETA-ROA*SJMT
BPHI=8PH]+ROA®SUMP
ROABROAwRA

FNsFNe+i,

CONTINUE

BPHI=8PH] /8T

CALCULATE TAIL FIELD

RCT=ReCT

RCT2=RLTww?2

RSC3R«STeCP(2)

TOP=R2«RSC

BOT=R1+RSC
BXz=BCS«(ATAN(TOP/RCT)-ATAN(ROT/RCT))/3.14159265
BPHIzBPH]«BX»SP(2)

BRHOz<RX*CP(2)

BY=BCS»alLDG( (RCT2+T02ww2)/(3CT2+B0T#¢2))/6,.28318531
BR=BR+BRHO®ST-BYeCT

BTHETAzRTHETA*BRHOwCT*BY«ST

ADD DIPOLE FIELD TO CAVITY TIELD

R3zRee3

BR=BR~62000,*COSTH/33
BTHETAzRTHETA-31000, ¢SINTH/3
B=BR*{ . E~05

BYHETAzRTHETA%1 . .E~05

BPHI=RPH]*1,E~05
BBcSURT(BReBR*BTHETACBTHETA+BPHI«BPHI)
RETURN

END
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